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ABSTRACT

Expanding upon the work of Way & Srivastava we demonstrate how the use of training sets of comparable size
continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and
other least-squares fitting methods. This is possible via new large-size matrix inversion techniques developed for
Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with
a neural-network kernel function appears to give superior results for this problem. Our best-fit results for the
Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u, g, r, i, z filters gives an rms error of 0.0201
while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that
there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our
GPR rank-reduction methods. We find that morphological information included with many photometric surveys
appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This
would indicate that most morphological information simply adds noise from the GP point of view in the data
used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron
All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting
cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.
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1. INTRODUCTION

General approaches to calculating photometric redshifts from
broadband photometric data have been discussed elsewhere re-
cently (Way & Srivastava 2006, hereafter Paper I). These involve
template-based approaches and what are referred to as training-
set approaches. In this paper, we expand upon the training-set
approaches outlined in Paper I using Gaussian processes (GPs).
Previously, we were limited to training-set sizes of order 1000
because a matrix inversion of order 1000×1000 was required
for calculating the GPs. Part of the limitation was due to the
amount of single thread accessible RAM on our circa 2005
32-bit computers, meaning that one could not invert a matrix
larger than about O(1000×1000) in size at one time within
Matlab,6 our choice for implementing GPs. Today one can now
use commodity-based 64-bit workstations and invert matrices
of O(20000) within Matlab. However, even this is a small frac-
tion of the total potential size of today’s photometric redshift
training sets. For this reason we have developed new non-sparse
rank-reduction matrix inversion techniques that allow one to use
over 100,000 training samples. From this work we demonstrate
that the new rank-reduction methods only require approximately
30–40,000 samples to get the optimal possible fit from GPs on
Sloan Digital Sky Survey (SDSS; York et al. 2000) data.

Since Paper I several new approaches to Galaxy photometric
redshifts from broadband photometry have come about along
with expansion and refinement of previously published methods.
Below is a summary of some of these approaches.

5 Also at Department of Physics and Astronomy, Uppsala, Sweden.
6 http://www.mathworks.com

Kurtz et al. (2007) have used the Tolman surface brightness
test (μ–PhotoZ) using the relation μ ≈ (1 + z)−4 where μ
is the galaxy surface brightness in the SDSS r band via the
50% Petrosian (1976) radii (petroRad50_r): μ = petroMag_r
+ 2.5(0.798 + 2log(petroRad50_r)), and the galaxy r − i
colors to pick the red galaxies this method is intended for.
The Petrosian radii may add useful information because of the
angular diameter distance relation. We also find this to be the
case for GPs as discussed in Section 6 below.

Carliles et al. (2008) have used Random Forests (ensembles
of classification and regression trees) to estimate photometric
redshifts from the SDSS. Like GPs (see Paper I) this method
is also supposed to give realistic individual galaxy photometric
redshift error estimates and few or no catastrophic photometric
redshift prediction failures. Ball et al. (2008) continue their
work using machine learning methods to derive photometric
redshifts for galaxies and quasars using the SDSS and the Galaxy
Evolution Explorer (GALEX, Martin et al. 2005).7 In particular,
they have made interesting progress in eliminating catastrophic
failures in quasar photo-z estimation while bringing down the
rms error (RMSE) values. Work by Kaczmarczik et al. (2009)
uses astrometric information to break degeneracies in quasar
photometric redshifts which may also be applied to other kinds
of data.

Wray & Gunn (2008) have taken a Bayesian approach using
the SDSS apparent magnitude colors u − g, g − r, r − i,
i − z, surface brightness μi in the i band, the Sérsic n-index
(Sérsic 1968), and the absolute magnitude Mi “corrected” to
z = 0.1. Some of these quantities are only available from the

7 http://www.galex.caltech.edu/
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New York University Value Added Catalog (NYC-VAGC) of
Blanton et al. (2005) or calculated from the raw photometry
directly. Wang et al. (2008) have used support vector machines
(also see Wadadekar 2005) and kernel regression on a SDSS and
Two Micron All Sky Survey (2MASS, Skrutskie et al. 2006)8

cross-match list.
D’Abrusco et al. (2007) utilized a supervised neural network

using a standard multilayer perceptron, but operated in a
Bayesian framework on two different SDSS data sets. One of
their data sets consists of the SDSS Data Release Five (DR5;
Adelman-McCarthy et al. 2007) luminous red galaxy (LRG)
sample (Eisenstein et al. 2001), and the other which they term
the “General Galaxy sample” includes all objects classified as
“GALAXY” in the SDSS. They then break their sample up
into two redshift ranges and after some interpolation fit to the
residuals they obtain impressive results, especially for the LRG
sample (see their Table 4). In a higher redshift study, Stabenau
et al. (2008) used surface brightness priors to improve their
template-based scheme for photometric redshifts in the VLT
Very Deep Survey (VVDS) (Le Fèvre et al. 2004) and Great
Observatories Origins Deep Survey (GOODS) (Giavalisco et al.
2004) surveys.

This certainly does not cover all of the recent work in this field,
but is a representative sample to show the intense interest being
generated because of near-future large-area multi-band surveys
like the Large Synoptic Survey Telescope (LSST; Ivezic et al.
2008)9 and PanStarrs (Kaiser et al. 2002).

We have used a variety of data sets in our analysis which
are discussed in Section 2. Discussion of the photometric
and spectroscopic quality of the data sets along with other
photometric pipeline output properties of interest is found in
Section 3. The methods used to obtain photometric redshifts are
in Section 4. How to pick the optimal sample size, matrix rank,
and inversion method are in Section 5. Results are in Section 6
and conclusions in Section 7.

2. THE SLOAN DIGITAL SKY SURVEY, THE TWO
MICRON ALL SKY SURVEY, AND THE GALAXY

EVOLUTION EXPLORER DATA SETS

Most of the work herein utilizes the SDSS Main Galaxy
Sample (MGS, Strauss et al. 2002) and the LRG sample (LRG;
Eisenstein et al. 2001) from the SDSS Data Release Three (DR3,
Abazajian et al. 2005) and DR5 (Adelman-McCarthy et al.
2007). We include the DR3 to facilitate comparison between
the present work and that from Paper I. We also utilize the DR5
to maximize the size of our cross-match catalogs.

For comparison with other work we have cross-matched the
SDSS data sets with both the 2MASS extended source catalog
and GALEX Data Release 4 (GR4)10 All Sky Survey photometric
attributes. Our method of cross-matching these catalogs has not
changed since Paper I except that we now cross-match against
the SDSS DR5 instead of the DR3 to increase the size of our
catalogs. Many aspects of the SDSS, 2MASS, and GALEX
surveys relevant to this work were described in Paper I and hence
we will not repeat them here. The only new catalog included
since Paper I is the SDSS LRG. The SDSS LRG sample is
similar to the SDSS MGS except that it explicitly targets the
LRGs. These galaxies have a fairly uniform spectral energy
distribution (SED) and a strong 4000 Å break which tend to

8 http://www.ipac.caltech.edu/2mass/
9 http://www.lsst.org
10 http://galex.stsci.edu/GR4

make calculating photometric redshifts easier than for the MGS
(e.g., Padmanabhan et al. 2005) since the training set contains
more homogeneous SEDs. Since these galaxies are among the
most luminous galaxies in the universe and tend to be found
in over dense regions (e.g., clusters/groups of galaxies) they
are also good candidates for mapping the largest scales in the
universe; see Eisenstein et al. (2001) for more details.

3. PHOTOMETRIC AND REDSHIFT QUALITY,
MORPHOLOGICAL INDICATORS, AND OTHER

CATALOG PROPERTIES

For SDSS photometric and redshift quality, we follow much
the same recipe as in Paper I. However, unlike Paper I we re-
frain from using SDSS photometry of the highest quality (what
we referred to as “GREAT”) as we did not see any consistent
improvements in our regression fits using this higher quality
photometry. We stick with the SDSS photometric “GOOD”
flags as defined in Paper I: !BRIGHT and !BLENDED and
!SATURATED. See Table 2 in Paper I for a description
of the flags. We utilize the same photometric quality flags
for the GALEX and 2MASS data sets as described in
Paper I, Section 3. We incorporate the same SDSS mor-
phological indicators as in our previous work (see Paper I,
Section 3.5). The SDSS casjobs11 queries used to get the
data are the same as those in the Appendix of Paper I
except in the case of the LRGs utilized herein which re-
quire primtarget=TARGET_GALAXY_RED (p.primtarget &
0x00000020 > 0) instead of primtarget=TARGET_GALAXY
(p.primtarget & 0x00000040 > 0) for the MGS.

Tables 1 and 2 contain a comprehensive list of the six data
sets used herein.

4. IMPROVED GAUSSIAN PROCESS METHODS

In this section, we will discuss our investigation of different
GP transfer functions (kernels) & rank-reduction matrix inver-
sion techniques. Our results suggest that there may be an upper
limit to the number of training-set galaxies needed to derive
photometric redshifts using the SDSS, but this result should be
viewed with caution. While there have been recent suggestions
that one may quantify the maximum number of galaxies re-
quired to obtain an optimal fit (Bernstein & Huterer 2009), in
practice what we see with the GPs could be an artifact of the
algorithm itself. In particular, it might be desirable to explore
building good “local” models to compare with the present GPs
(and neural networks), which are global models.

In the GP method utilized herein, one would begin with
a training-set matrix X of dimensions n × d, where n is the
number of galaxies and d is the number of components which
might include broadband flux measurements and morphological
information. One would also have a target vector y of dimensions
n × 1, which would contain the known redshift for each galaxy
in our case. The testing data are in a matrix X∗ of dimension
n∗ × d with target values in a matrix y∗ consisting of n∗ × 1
redshifts, where n∗ is the number of test samples. We wish to
predict the value of y∗ given as X, y, and X∗. The prediction of
y∗ requires a covariance function k(x, x ′), with x and x ′ vectors
with d components. This covariance function can be used to
construct a n × n covariance matrix K, where Kij = k(xi, xj )
for rows xi and xj of X, and the n∗ × n cross-covariance matrix
K∗ (K∗

ij = k(x∗
i , xj ) where x∗

i is the ith row of X∗). Once this

11 http://casjobs.sdss.org
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Table 1
Data Sets 1–3

Data Set 1a Data Set 2 Data Set 3
SDSS-DR3 MGS SDSS-DR5 LRG SDSS-DR3 MGS + GALEX-GR4

Training=180045,Testing=20229b Training=87002,Testing=9666 Training=30036,Testing=3374

g–r–i g–r–i g–r–i
u–g–r–i u–g–r–i u–g–r–i
g–r–i–z g–r–i–z g–r–i–z

u–g–r–i–z u–g–r–i–z u–g–r–i–z
. . . . . . nuv–fuv–g–r–i
. . . . . . nuv–fuv–u–g–r–i
. . . . . . nuv–fuv–g–r–i–z
. . . . . . nuv–fuv–u–g–r–i–z

u–g–r–i–z–p50 u–g–r–i–z–p50 nuv–fuv–u–g–r–i–z–p50
u–g–r–i–z–p50–p90 u–g–r–i–z–p50–p90 nuv–fuv–u–g–r–i–z–p50–p90

u–g–r–i–z–p50–p90–ci u–g–r–i–z–p50–p90–ci nuv–fuv–u–g–r–i–z–p50–p90–ci
u–g–r–i–z–p50–p90–ci–qr u–g–r–i–z–p50–p90–ci–qr nuv–fuv–u–g–r–i–z–p50–p90–ci–qr

u–g–r–i–z–p50–p90–fd u–g–r–i–z–p50–p90–fd nuv–fuv–u–g–r–i–z–p50–p90–fd
u–g–r–i–z–p50–p90–fd–qr u–g–r–i–z–p50–p90–fd–qr nuv–fuv–u–g–r–i–z–p50–p90–fd–qr

Notes.
a u–g–r–i–z=5 SDSS magnitudes, p50=Petrosian 50% light radius in the SDSS r band, p90=Petrosian 90% light radius in the r
band, ci=Petrosian inverse concentration index, fd=FracDev value, qr=Stokes Q value in the r band, nuv=GALEX Near UV band,
fuv=GALEX Far UV band, see Paper I Section 3.6 for more details.
b These are the sizes of the testing and training sets used in our analysis.

Table 2
Data Sets 4–6

Data Set 4a Data Set 5 Data Set 6
SDSS-DR5 LRG + GALEX-GR4 SDSS-DR5 MGS + 2MASS SDSS-DR5 LRG + 2MASS

Training=4042,Testing=454 Training=133947,Testing=15050 Training=39344,Testing=4420

g–r–i g–r–i g–r–i
u–g–r–i u–g–r–i u–g–r–i
g–r–i–z g–r–i–z g–r–i–z

u–g–r–i–z u–g–r–i–z u–g–r–i–z
nuv–fuv–g–r–i g–r–i–j–h–k g–r–i–j–h–k

nuv–fuv-u–g–r–i u–g–r–i–j–h–k u–g–r–i–j–h–k
nuv–fuv-g–r–i–z g–r–i–z–j–h–k g–r–i–z–j–h–k

nuv–fuv--u–g–r–i–z u–g–r–i–z–j–h–k u–g–r–i–z–j–h–k
nuv–fuv–u–g–r–i–z–p50 . . . . . .

nuv–fuv-u–g–r–i–z–p50–p90 . . . . . .

nuv–fuv--u–g–r–i–z–p50–p90–ci . . . . . .

nuv–fuv--u–g–r–i–z–p50–p90–ci–qr . . . . . .

nuv–fuv--u–g–r–i–z–p50–p90–fd . . . . . .

nuv–fuv–u–g–r–i–z–p50–p90–fd–qr . . . . . .

Note.
a u–g–r–i–z=5 SDSS magnitudes, p50=Petrosian 50% light radius in the SDSS r band, p90=Petrosian 90% light radius in the r band,
ci=Petrosian inverse concentration index, fd=FracDev value, qr=Stokes Q value in r band, nuv=GALEX Near UV band, fuv=GALEX
Far UV band, j=2MASS j band, h=2MASS h band, k=2MASS k band; see Paper I Section 3.6 for more details.

is accomplished, the prediction ŷ∗ for y∗ may be given by the
GP equation (Rasmussen & Williams 2006, p. 17):

ŷ∗ = K∗(λ2I + K)−1y, (1)

where λ represents the noise in y and can be used to improve
the quality of the model (Rasmussen & Williams 2006).

In addition to the prediction ŷ∗, the GP approach also leads
to an equation for C the covariance matrix for the predictions
in Equation (1). If the n∗ × n∗ matrix K∗∗ has entries K∗

ij =
k(x∗

i , x
∗
j ) then (Rasmussen & Williams 2006, p. 79)

C = K∗∗ − K∗(λI + K)−1K∗T . (2)

The superscript T indicates the transpose. The pointwise
variance of the prediction is diag(C), the diagonal of the n∗ ×n∗
matrix C.

For details about the selection of λ, the covariance function
(kernel) k, hyperparameters in the kernel, and GPR in general
see Foster et al. (2009) and Rasmussen & Williams (2006). The
following discussion is a summary of Foster et al. (2009). We
will use the above notation for the sections that follow.

4.1. Different Kernel Choices

In Paper I, we relied exclusively on a polynomial kernel, but to
investigate the possibility that other kernels might perform better
we have tried several other common forms in the meantime.

The squared exponential (SE) kernel function (also known as
the “radial basis” kernel function) is given by

kSE(r) = exp

(
− r2

2l2

)
, (3)
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where l is the length scale. The length scale determines the rate
at which the kernel function drops to zero away from the origin.
This covariance function is infinitely differentiable and hence
is very smooth. Because it is so smooth, it can sometimes be
unrealistic for use in modeling real physical processes.

The Matern class covariance function is given by

k(r) = 2l−v

Γ(v)

(√
2vr

l

)v

Kv

(√
2vr

l

)
, (4)

where v and l are positive parameters, and Kv is a modified
Bessel function. As v → ∞ this reduces to the SE above. The
process becomes very non-smooth for v = 1

2 , and for values
of v � 7

2 , the function is as rough as noise. The Matern class
covariance function is mean-square differentiable k times if and
only if v > k. The Matern class of covariance functions can be
used to model real physical processes and is more realistic than
the above SE covariance function.

The rational quadratic covariance function is given by

k(r) =
(

1 +
r2

2αl2

)−α

. (5)

As the value of the parameter α → ∞ this reduces to the SE
function described earlier. Unlike the Matern class covariance
function, this function is mean-square differentiable for every
value of α.

The polynomial covariance function is given by

k(x, x ′) = (
σ 2

0 + xT Σpx ′)p
, (6)

where Σp is a positive semidefinite matrix and p is a positive
integer. If σ 2

0 = 0 the kernel is homogeneous and linear,
otherwise it is inhomogeneous. In principle, this function may
not be suitable for regression problems as the variance grows
with |x| for |x| > 1. However, there are applications where it has
turned out to be effective (Rasmussen & Williams 2006).

The neural network covariance function is given by

kNN(x, x ′) = 2

π
sin−1

(
2xT Σx ′√

(1 + 2xT Σx)(1 + 2x ′T Σx ′)

)
. (7)

This covariance function is named after neural networks because
the function can be derived from the limiting case of a model of
a neural network (Neal 1996).

In our calculations we chose Σ, which scales as the training-
set data, to have the form I/ l2 where I is a d ×d identity matrix.
The hyperparameters l and λ were selected by finding a (local)
maximum to the marginal likelihood using the routine minimize
from Rasmussen & Williams (2006, pp. 112–116, 221).

Two or more covariance functions can be combined to pro-
duce a new covariance function. For example, sums, products,
convolutions, tensor products, and other combinations of covari-
ance functions can be used to form new covariance functions.
Details are described in Rasmussen & Williams (2006).

For the calculations shown in the rest of the paper, we utilized
Equation (7), the neural network kernel, since for our data it
outperformed all other kernels.

4.2. Low-rank Approximation Matrix Inversion Techniques

As mentioned in Paper I (Section 4.4) to utilize GPR, the
inversion of the matrix M = (λ2I + K) in Equation (1) is

required. This matrix turns out to be an n×n non-sparse matrix
where n is the number of training-set galaxies. Paper I mentioned
that matrix inversion requires O(n3) floating point operations.
Thus, to accommodate the matrix in memory and to keep the
computation feasible, we kept n �1000 in Paper I.

This was a severe shortcoming for GPs since they had 1–2
orders of magnitude less training samples to work with than all
of the other methods described in Paper I. Nonetheless, GPs
performed extremely well within this limitation.

Since writing Paper I, we have developed a variety of rank-
reduction methods to invert large non-sparse matrices. These
will make GPR much more competitive than that shown in
Paper I. Foster et al. (2009) outline the rank-reduction methods
utilized in detail, so we provide a brief summary of their
advantages below.

Note that the number of samples, n, is the same as that
described above, while the rank, m < n, is the size of the
rank-reduced matrix. We typically keep m < 1500 to keep
the numbers of operations to invert the matrices manageable
in wall-clock time. Memory usage for the methods below is
O(nm).

SR-N: the subset of the regressors method. This method has
been proposed and utilized in the past (Rasmussen & Williams
2006; Whaba 1990; Poggio & Giroso 1990) and requires nm2

flops to invert. However, this method is known to have problems
with numerical stability. That problem is addressed in the
methods below.

SR-Q: the subset of regressors using a QR factorization. The
use of the QR factorization (Golub & Van Loan 1996, p. 239)
is designed to reduce computer arithmetic errors in the SR-N
method. This method requires 2 nm2 flops to invert. Therefore,
it is a little more expensive than SR-N.

SR-V: the V method. Since this method in combination with
pivoting (see below) is the one we utilize the most in later
aspects of this paper, we will go into a little more depth
here. From Section 4 Equation (1) we recall that the size of
(λ2I + K)−1 is n × n and as mentioned above for large n it is
not practical to calculate (λ2I + K)−1 directly. To get around
this we will approximate K with VVT where V is produced
by partial Cholesky factorization (see Foster et al. 2009). Let
K∗

1 be the first m columns of K∗ and let V11 be the m × m
matrix of the first m rows of V where m < n. Then let
V ∗ = K∗

1 V −T
11 . In addition to replacing K with VVT we can also

approximate K∗ with V ∗V T . With these substitutions one sees
that K∗(λ2I +K)−1y from Equation (1) can be approximated by
V ∗V T (λ2I + V V T )−1y. It turns out that this can also be written
as ŷ∗ = V ∗(λ2I + V T V )−1V T y. The matrix (λ2I + V T V )−1 is
now m×m instead of n×n and for small enough m the equation
can be solved quite quickly. The new flop count will be O (nm2).

This method is intermediate in terms of growth of computer
arithmetic errors between the normal equations and the SR-Q
method, but in general the accuracy is close to the SR-Q. This
method was first discussed by Seeger et al. (2003) and Whaba
(1990, p. 136).

SR-NP, SR-QP, SR-VP: the use of pivoting with rank-
reduction methods. All of the previous methods use the first
m columns of K, but one can select any subset of the columns to
construct a low-rank approximation. Selecting these columns is
part of the problem to be solved. Our approach is similar to that
of Fine & Scheinberg (2001).

Pivoting is useful in forming a numerically stable low-rank
approximation of a positive semidefinite matrix, and to do so it
identifies the rows of the training data which limit the growth
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Figure 1. From Data Set 1 (see Table 1). Error bars are not plotted for reasons of clarity; however, they are of the same order as the scatter in the lines.

(A color version of this figure is available in the online journal.)

of computer arithmetic errors. A pivot of the matrix K, which
is simply a permutation of K of the form PKPT corresponds to
the permutation PX of X. It is possible to move columns and
rows of K so that the m × m leading principal submatrix of
PKPT has the condition number that is a function of n and m.
Thus pivoting will tend to construct a low-rank approximation
whose condition number is related to the condition number
of the low-rank approximation produced by the singular-value
decomposition. However, the growth of computer arithmetic
errors in the algorithm depends on the condition number of
the low-rank approximation. Since pivoting limits the condition
number and the growth of computer arithmetic errors depends
on the condition number, pivoting will tend to improve the
numerical stability of the algorithm. This can, in principle,
reduce the effect of computer arithmetic errors. If computer
arithmetic errors are larger than the other errors (such as
measurement errors and modeling errors) in the prediction
of the redshift, then an algorithm incorporating pivoting may
potentially be more accurate than an algorithm without pivoting.

Examples 2–4 in Foster et al. (2009) illustrate some of the
dangers of not pivoting and how they are resolved with pivoting
for small (artificial) problems.

In the end, adding pivoting increases SR-N to 2 nm2 flops and
SR-Q to 3 nm2 while SR-V stays the same.

5. COMPARISON: PICKING THE OPTIMAL SAMPLE
SIZE, RANK SIZE, AND MATRIX INVERSION METHOD

Here we investigate Data Set 1 in detail in order to dis-
cern a variety of things including: is there an optimal sam-
ple size for a given survey; what is the best matrix inversion
method; if using rank-reduction methods what is the opti-
mal rank size? When discussing conventional matrix inver-

sion, we will be limited to a maximum of 20,000 training
samples.12

Figures 1 and 2 show the variation of RMSE and calculation
time versus sample size. For the GP method (which is labeled
GPR and is in yellow), this involved a full matrix inversion up
to 20,000 training-set samples. The rest of the curves are from
the other rank-reduction matrix inversion techniques and are
labeled as described in the previous section. Several features are
apparent:

1. The SR-N method does not perform well in comparison
to any of the other techniques. However, it does invert its
matrices much faster than the standard matrix inversion
technique.

2. Except for the SR-N method, all of the other rank-reduction
methods outperform the full matrix reduction in the range
of 10,000–20,000 samples.

3. The rank-reduction methods with pivoting slightly outper-
form the non-pivoting methods in term of lower RMSE val-
ues. However, the pivoting methods take much more time
to do the matrix inversions than the non-pivoting methods.

4 More training-set samples give lower RMSE values. By
around 40,000 samples the curves start to level off regard-
less of the rank size.

5. Larger rank sizes clearly give better performance in terms
of lower RMSE for a given sample size. This is described
in more detail below.

Figure 3 shows the variation of RMSE with rank for several
different sample sizes. The rank is plotted from 100 to 1000 in

12 This is due to memory (RAM) limitations. Our 64-bit compute platform is
based around a 2 × 2.66 Ghz Dual-Core Intel Xeon with 16GB of 667 Mhz
DDR2 RAM.
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Figure 2. From Data Set 1 (see Table 1), but unlike in Figure 1 we show that the matrix inversion times are linear out to the full size (180,000 galaxies) of the data set.

(A color version of this figure is available in the online journal.)
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Figure 3. From Data Set 1 (see Table 1) error bars are not plotted for reasons of clarity. They are of the same order as the scatter in the lines.

(A color version of this figure is available in the online journal.)
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Figure 4. From Data Sets 1 and 2 (see Table 1). We utilize the rank-reduction method termed SR-VP with a rank size of 800. The training sets (n in the plot, following
our earlier notation) range in size from 1000 to 80,000 in 1000 increments with 10 bootstraps (Efron & Tibshirani 1993) per run. The testing sample size (n∗) was
always 20,229. The mean value of the 10 bootstraps is plotted. 90% confidence levels from the bootstrap resampling are of order the vertical line variation. Clearly,
the errors are much larger for those which include the morphological parameters.

increments of 100, but we also add rank=1500 to see if there
is a large change in calculated RMSE for a much larger value.
Some important features to note here:

1. As in Figure 1, the RMSE decreases for larger sample sizes,
but as was noted earlier, there is not a large difference
between sample sizes of 40,000 and above.

2. For the non-pivoting matrix inversion techniques (not
including SR-N) SR-Q and SR-V the RMSE increases
beyond rank=800. This suggests that there might be some
instability associated with non-pivoting methods as rank
size becomes large. For this reason, one should stick with
the pivoting methods (SR-QP or SR-VP) if one wishes to
use a rank of 800 or larger.

3. On average, it appears that SR-VP and SR-QP outperform
the other rank-reduction methods. SR-VP also appears to
outperform SR-QP, although the difference is marginal.

4. SR-VP with rank=800 and sample size=40,000 appear to
be optimal choices for our data when looking at Figures
1–3 given the accuracy of the result. The timings are much
longer for these pivoting methods as shown above, but they
outperform all other methods.

6. RESULTS

6.1. SDSS Main Galaxy and LRG Results

The SDSS MGS (Data Set 1) & LRG (Data Set 2) will
give us different results because the LRG sample has far fewer
SED types than are found in the SDSS MGS while the LRG
sample goes to fainter magnitudes and hence deeper redshifts
(see Figures 8 and 9). This will make the job of any regression
algorithm quite different. This is evident in the two panels of
Figure 4, which show the variation of RMSE versus sample size
for the two different data sets. A number of points need to be
stressed:

1. Morphological inputs. The morphological information
(p50, p90, ci, fd, qr) may add some information that the re-
gression algorithm can utilize. This includes the Petrosian
50% radii (p50), the Petrosian 90% (p90), the inverse con-
centration index (ci=p50/p90), the FracDev (fd) and Stokes

Q parameter (qr) all in the SDSS r band. More details
on these parameters are discussed in Paper I. Data Set 1
(Figure 4(a)) and the five SDSS filters u–g–r–i–z (not
including morphology inputs) clearly outperform all of
the subsets of u-g-r-i-z (g–r—i, u–g–r–i, and g–r–i–z)
and the addition of morphological inputs. In Data Set 2
(Figure 4(b)) the morphological information appears to add
noise for the most part making the fits worse than by using
only combinations of the five SDSS u–g–r–i–z bandpass
filters.

2. Fewer SEDs. As mentioned in the previous section, by the
time sample sizes of ∼ 40,000 are reached in the SDSS
MGS of Data Set 1 (Figure 4(a)) the RMSE begins to
level off. In the SDSS LRG of Data Set 2 (Figure 4(b))
however this is already occurring for most of the inputs in
the 10,000–20,000 range. This is clearly the advantage of
having less SEDs to worry about in the SDSS-LRG sample
versus the SDSS MGS. In fact, for Data Set 2 (SDSS LRG)
it is clear that only four of the five SDSS bandpasses are
sufficient for the optimal fit (g–r–i–z). The SDSS u bandpass
is clearly superfluous in the SDSS-LRG data set when using
GP fitting routines.

3. Errors. 90% confidence levels derived from the bootstrap
resampling are roughly at the level of the variation in each
of the inputs used as a function of sample size. It is clear
that adding morphological information requires larger error
estimates for these data sets.

6.2. Cross-matching GALEX and SDSS Results

Figure 5 shows results from a cross-match of the SDSS and
GALEX catalogs, which are listed as Data Sets 3 and 4 in
Tables 1 and 2. Figure 7 shows the SDSS and SDSS + GALEX
results for Data Sets 1–4, but without any SDSS morphological
inputs included. This is to better quantify the differences
between the SDSS and SDSS + GALEX GP fits. The following
should be noted:

1. Comparing Figure 4(a) to Figure 5(a) one sees that those
inputs that include SDSS morphological information are
slightly improved when GALEX filters are included. The
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Figure 5. From Data Sets 3 and 4 (see Table 1). We utilize the rank-reduction method termed SR-VP with a rank size of 800. On the left in plot (a), we use training
sets (n in the plot, following our earlier notation) ranging in size from 1000 to 30,000 in 1000 increments with 10 bootstraps per run. The testing sample size (n∗) is
3374. The mean value of 10 bootstraps resampling runs is plotted. 90% confidence levels from the bootstrap resampling are of order the vertical line variation. On the
right, we use similar notation, but we have smaller training (1000–4000 in increments of 1000) and testing (454) sets.

0 10000 20000 30000 40000 50000 60000 70000 80000
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

Sample Size

R
M

S
E

Data Set 5: SDSS−MGS + 2MASS,  SR−VP, RANK=800, n=10000−80000, n*=15050

0 5000 10000 15000 20000 25000 30000 35000 40000
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

Sample Size

R
M

S
E

Data Set 6: SDSS−LRG + 2MASS, SR−VP, RANK=800, n=1000−39000, n*=4420
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Figure 6. From Data Sets 5 and 6 (see Table 1). We utilize the rank-reduction method termed SR-VP with a rank size of 800. For Data Set 5 the training sets (denoted
as n) range in size from 1000 to 80,000 in 1000 increments with 10 bootstraps per run and a testing-set (n∗) size of 15,050. On the right, Data Set 6 training sets range
from 1000 to 40,000 in increments of 1000 with 10 bootstraps per run and a testing-set size of 4420. Bootstrap 90% confidence levels are again of order the vertical
line variation.

error bars on those with morphological inputs (errors
not shown here) are also smaller in Figure 5(a) versus
Figure 4(a). This would imply that the addition of GALEX
filters helps make better use of the morphological inputs.

2. Figure 7(a) is made up of Figures 4(a), 5(a), and 6(a) without
the SDSS morphological information included. One notices
that Data Set 3 (SDSS–MGS + GALEX) in Figure 7(a)
has higher RMSE values for the purely SDSS bandpasses
(g–r–i, u–g–r–i, g–r–i–z, u–g–r–i–z) than Data Set 1 (SDSS
MGS only). Here the max size of the training data sets is
different by a factor of 2.7 (80,000 versus 30,000), hence
the difference may be attributed to a smaller data set size,
although that is unlikely given how we subsample the data in
Data Set 1. However, if one examines Figure 8 one sees clear
differences and similarities in the magnitude and redshift
distributions of these two catalogs. In particular, the r-band
magnitude distribution is quite distinct, the z-band less so.
This seems to have made it harder for the GPs to obtain

a good fit for the MGS galaxies. Within Data Set 3 of
Figure 7(a) the GALEX bandpasses help with two of the
SDSS only input options (g–r–i and g–r–i–z) compared
to Data Set 1. However, the two GALEX bandpasses do
not help with the best inputs from Data Set 1 (u–g–
r–i and u–g–r–i–z). Hence for the MGS galaxies there
appears no need to utilize the GALEX magnitudes to
improve photo-z estimation over that already obtained
from SDSS only magnitudes. The same applies to the
SDSS morphological information, which adds very little
of substance. For example, compare u–g–r–i–z in Data Set
1 (Figure 4(a)) versus nuv–fuv–u–g–r–i–z-p50–p90–fd–qr
in Data Set 3 (Figure 5(a)).

3. Comparing Figures 4(b) and 5(b), one sees that the LRG +
GALEX cross-match catalog has lower RMSE values than
the LRG only catalog regardless of the inputs used. Hence
one would be led to believe that one should always use
GALEX magnitudes where available for LRG galaxies to
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Figure 7. From Data Sets 1–6 (see Table 1). The SDSS u, g, r, i, z filter combinations alone along with those of GALEX nuv, fuv filters, and 2MASS j, h, k. This
demonstrates how the addition of the GALEX and 2MASS filters influence the SDSS only magnitude fits via the GP SR-VP method.
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Figure 8. Overlapping histograms for Data Sets 1 and 3 (see Table 1) from three of the five SDSS magnitudes (u, r, z). Data Set 1 is in blue, and Data Set 2 in magenta.
Of course, the SDSS+GALEX cross-match catalogs (Data Set 3) are smaller, so the SDSS only data (Data Set 1) was randomly resampled to be the same size as the
cross-match catalog so that trends in the plots are directly comparable.

improve photo-z estimation. However, there are two other
things to take note of. First, one again sees that the max
training data set size is a factor of 20 smaller (80,000 versus
4000) between Data Sets 4 and 2, although Data Set 2 does
take a subsample at the level of Data Set 4. Therefore,
sample size does not appear to be the issue here. Looking
at Figure 9, it is clear that there are few similarities in the
magnitude or redshift distributions for these two data sets.
Clearly, the GP algorithm is fitting a completely different
set of data points and it finds Data Set 4 much easier than
Data Set 2.

4. Looking at Figure 7(b) (made up of Figures 4(b), 5(b), and
6(b) without the SDSS morphological inputs included) the
addition of the GALEX nuv–fuv filters within Data Set 4
seems to assist in photo-z estimation when using SDSS
filters g–r–i and u–g–r–i, but has a little effect when added
to the already superior g–r–i–z and u–g–r–i–z.

As noted above, the RMSE differences between Figures 4(a)
and 5(a) suggest that the underlying distribution of SDSS
magnitudes and redshifts of Data Set 1 versus 3 are different
as seen in Figure 8. The data set has shrunk in size between
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Figure 9. Overlapping histograms for Data Sets 2 and 4 (see Table 1) from three of the five SDSS magnitudes (u, r, z). Data Set 2 is in blue and Data Set 4 in magenta.
Of course, the SDSS+GALEX cross-match catalogs (Data Set 4) are smaller, so the SDSS only data (Data Set 2) was randomly resampled to be the same size as the
cross-match catalog so that trends in the plots are directly comparable.

(A color version of this figure is available in the online journal.)
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Figure 10. Overlapping histograms for Data Sets 1 and 5 (see Table 1) from three of the five SDSS magnitudes (u, r, z). Data Set 1 is in blue and Data Set 5 in red.
Of course, the SDSS+2MASS cross-match catalogs (Data Set 5) are smaller, so the SDSS only data (Data Set 1) was randomly resampled to be the same size as the
cross-match catalog so that trends in the plots are directly comparable.

(A color version of this figure is available in the online journal.)
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Figure 11. Same as Figure 10 except we use Data Sets 2 (blue) and 6 (red).

(A color version of this figure is available in the online journal.)
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Figure 12. Spectroscopic redshift plotted again predicted photometric redshift for the best performing input from each of the Data Sets in Table 1.

(A color version of this figure is available in the online journal.)



634 WAY ET AL. Vol. 706

0 0.1 0.2 0.3 0.4
−0.2

−0.1

0

0.1

0.2
Data Set 1: u−g−r−i−z

z
p

h
o

t−
z

s
p

e
c

RMSE=0.020344

0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2
Data Set 2: g−r−i−z

RMSE=0.021353

0 0.1 0.2 0.3 0.4
−0.2

−0.1

0

0.1

0.2
Data Set 3: nuv−fuv−u−g−r−i−z−p50−p90−fd−qr

z
p

h
o

t−
z

s
p

e
c

RMSE=0.020111

0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2
Data Set 4: nuv−fuv−u−g−r−i−z−p50−p90−fd

RMSE=0.012903

0 0.1 0.2 0.3 0.4
−0.2

−0.1

0

0.1

0.2
Data Set 5: u−g−r−i−z−j−h−k

z
spec

z
p

h
o

t−
z

s
p

e
c

RMSE=0.017004

0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2
Data Set 6: u−g−r−i−z−j−h−k

z
spec

RMSE=0.015493

Figure 13. Residuals as a function of spectroscopic redshift for the best performing input from each of the data sets in Table 1.

(A color version of this figure is available in the online journal.)

Data Sets 1 and 3, while the redshift distribution appears the
same. However, the colors of the galaxies have changed enough
that the GPs find it harder with the reduced sample size to obtain
a good fit.

The explanation for the improvement seen between
Figures 4(b) and 5(b) (Data Sets 2 and 4) is perhaps simpler.
Figure 9 shows the u, r, z, and redshift distributions for these
two data sets. Clearly, the centroid, spread, and shape of the
distributions of the u, r, z and redshift distributions are signif-
icantly different. The LRG + GALEX redshift distribution in
particular is strongly truncated beyond a redshift of about 0.2
while the magnitude distributions tend to be more Gaussian in
shape. Certainly, it is easier for GPs to come up with better fits
for lower-redshift distributions.

The marked differences between the SDSS MGS and LRG
results are because of the different galaxy SEDs that exist in
each catalog. These differences also exist because the LRG
samples go fainter than the MGS samples (see Eisenstein et al.
2001) and they have a different redshift and galaxy magni-
tude distribution (see Figures 8 and 9). The magnitude and
redshift differences between the pure LRG and LRG+GALEX
catalogs are much larger than they are between the correspond-
ing MGS and MGS+GALEX catalogs. Clearly, the additional
GALEX inputs affect the SDSS MGS only (u–g–r–i–z) re-
sults negatively, while the GALEX inputs affect on the LRG
sample is ambiguous at best. These differences suggest that
one must be very careful in interpreting the improvement in
RMSE results associated with any SDSS + GALEX cross-match
catalogs.

6.3. Cross-matching 2MASS and SDSS Results

Figure 6 demonstrates our GPR results from a cross-match
catalog containing the 2MASS extended source catalog with

the SDSS MGS (Data Set 5) and the SDSS LRG sample (Data
Set 6). When Figure 6 is compared with Figure 4, the results in
Figure 6 are significantly better for both cases. While it might
be tempting to attribute this improvement to the inclusion of
additional bandpasses in the analysis in Figure 6, it is important
to take note of a variety of other important differences between
the RMSE estimates in these two figures.

1. For the SDSS only bandpasses (u–g–r–i–z) the RMSE drops
significantly between Data Sets 1–5 (Figures 4(a)–6(a)) and
Data Sets 2–6 (Figures 4(b)–6(b)); see Figure 7 for another
viewpoint. This drop is because the 2MASS galaxies tend
to be brighter and at lower redshift making the cross-match
catalog between the 2MASS and SDSS also brighter and
lower redshift than the SDSS only catalog especially for
the case of the LRG cross-match samples (see Figures 10
and 11).

2. Figure 6(b) (Data Set 6) has lower RMSE values compared
to Figure 4(b) (Data Set 2) regardless of input. It also
appears to converge to a best-fit RMSE very quickly in
comparison to Data Set 5 (Figure 6(a)).

3. In Figure 7(a) (focusing on Data Sets 1 and 5) it is clear that
adding the 2MASS fluxes improves the RMSE fit regardless
of which SDSS filters are combined with the 2MASS j–h–k
bandpasses.

4. In Figure 6(b) (Data Set 6) adding the 2MASS fluxes can
improve the RMSE fit, but the conditions under which
this improvement occurs are significantly different from
those in Figure 6(a) (Data Set 5). Upon close inspection
it can be seen that equivalent best results are obtained as
the training sample reaches ∼ 20,000 using g–r–i–z–j–h–k
(dashed green). This shows that for Data Set 6, the u band
adds little to the LRG sample. This is consistent with the
behavior observed in Figure 4(b) (Data Set 2).
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Table 3
Photometric Redshift Estimator Comparisons for u–g–r–i–z Inputs

Method Name σrms
a Data Setb Source

CWW 0.0666 MGS SDSS-EDR Csabai et al. (2003)
Bruzual–Charlot 0.0552 MGS SDSS-EDR Csabai et al. (2003)
ClassX 0.0340 MGS SDSS-DR2 Suchkov et al. (2005)
Polynomial 0.0318 MGS SDSS-EDR Csabai et al. (2003)
Kd-tree 0.0254 MGS SDSS-EDR Csabai et al. (2003)
Support vector machine 0.0270 MGS SDSS-DR2 Wadadekar (2005)
Artificial neural network 0.0229 MGS SDSS-DR1 Collister & Lahav (2004)
Nearest neighbor 0.0207 MGS SDSS-DR5 Ball et al. (2008)

0.0198 MGS SDSS-DR5 Ball et al. (2008)
Hybrid Bayesian 0.0275 MGS SDSS-DR5 Wray & Gunn (2008)
Linear regression 0.0283 0.0282 0.0284 MGS SDSS-DR3 Way & Srivastava (2006)
Quadratic regression 0.0255 0.0255 0.0255 MGS SDSS-DR3 Way & Srivastava (2006)
ANNzc 0.0206 0.0205 0.0208 MGS SDSS-DR3 Way & Srivastava (2006)
Ensemble model 0.0201 0.0198 0.0205 MGS SDSS-DR3 Way & Srivastava (2006)
Gaussian process 1000d 0.0227 0.0225 0.0230 MGS SDSS-DR3 Way & Srivastava (2006)
Gaussian processe 0.0201 0.0200 0.0201 MGS SDSS-DR3 This work: Data Set 1

Nearest neighbor 0.0243 LRG SDSS-DR5 Ball et al. (2008)
0.0223 LRG SDSS-DR5 Ball et al. (2008)

Hybrid 0.0300 LRG SDSS-DR3 Padmanabhan et al. (2005)
Linear regressionf 0.0289 0.0289 0.0289 LRG SDSS-DR5 This Work: Data Set 2
Quadratic regressionf 0.0240 0.0240 0.0240 LRG SDSS-DR5 This Work: Data Set 2
ANNzc 0.0207 0.0205 0.0210 LRG SDSS-DR5 This Work: Data Set 2
Ensemble modelf 0.0221 0.0220 0.0221 LRG SDSS-DR5 This Work: Data Set 2
Gaussian processe 0.0220 0.0217 0.0240 LRG SDSS-DR5 This Work: Data Set 2

Notes.
a The σrms cited here are for rough comparison only. No error bounds are included for the cited publications since many do not give
error bounds or they are not handled in a consistent fashion across publications. For this paper’s results, we quote the bootstrapped 50%,
10%, and 90% confidence levels as in Paper I.
b MGS: Main Galaxy sample, LRG = Luminous Red Galaxy sample, SDSS-EDR = SDSS Early Data Release (Stoughton et al.
2002), SDSS-DR1 = SDSS Data Release One (Abazajian et al. 2003), SDSS-DR2 = SDSS Data Release Two (Abazajian et al. 2004),
SDSS-DR3 = SDSS Data Release Three (Abazajian et al. 2005), SDSS-DR5 = SDSS Data Release Five (Adelman-McCarthy et al.
2007).
c Uses the ANNz code of Collister & Lahav (2004).
d GP algorithm limited to 1000 training samples.
e GP algorithm SR-VP with 80,000 training samples and rank=800.
f See Paper I (Way & Srivastava 2006) for details on these algorithms.

6.4. Systematics

In Figures 12 and 13, we plot the redshifts and residuals,
respectively, for those data sets that yield the lowest RMSE.
The actual RMSE is also indicated in each plot. There appears
to be a systematic shift above the regression line for redshifts less
than 0.1 and below the regression line between 0.1 < z < 0.2
for Data Sets 1, 3, and 5. This effect has been seen or
discussed in many papers on this topic (e.g., Collister & Lahav
2004; D’Abrusco et al. 2007; Ball et al. 2008; Wang et al.
2009).

At low redshifts (z < 0.1), the bias in the regression line
seen in Figure 12 (Data Set 1) is probably caused by the lack
of deep u-band data (see Figures 8 and 9). When supplemented
by the GALEX data, the bias looks to be slightly improved in
Data Set 3 (see Figures 12 and 13). The bias seen in between
redshifts of 0.1 < z < 0.2 for the SDSS-MGS data sets (Data
Sets 1, 3, 5) is probably due to degeneracies in the spectral
features of those galaxies. This bias appears to be less with the
addition of GALEX or 2MASS magnitudes, but it is still present
nonetheless.

6.5. Comparison with Other Work

In Paper I, we attempted to make comparisons between our
more primitive version of GPs (limited to 1000 training samples)

and several other well-known methods that we ran ourselves
(see Paper I, Tables 4–6) which included linear and quadratic
regression, the neural network ANNz package by Collister &
Lahav (2004), and our own neural network type code called
Ensemble Modeling (E-Model). In Table 3, we give the reader
some appreciation of the abilities of our updated GP method.
We compare our new GP method with a representative sample
of recent work on two easily comparable data sets: Data Set
1 using u–g-r–i–z inputs and Data Set 2 using only u–g–r–i–z
inputs.

7. CONCLUSION

We have demonstrated that with new non-sparse matrix
inversion techniques and a better choice of kernel (or transfer
function if you prefer) that GPR is a competitive way to obtain
accurate photometric redshifts for low-redshift surveys such as
the SDSS. However, several caveats must be noted regarding
the estimation of photometric redshifts from combined catalogs
of the SDSS and 2MASS as well as the SDSS and GALEX as
discussed in Section 6.

The SDSS + 2MASS and SDSS + GALEX cross-match results
are astoundingly good in some cases, but this occurs even when
the only bandpasses used are the u–g–r–i–z of the SDSS cross-
matched set. This is clearly a case where we are sampling a
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smaller range of redshifts and magnitudes, which makes the
regression job easier regardless of the algorithm. This shows
that one has to be careful when quoting “better” results from a
cross-match of any catalog.

We also demonstrate that the addition of many SDSS mor-
phological parameters does not systematically improve our re-
gression results. For a low-redshift survey like the SDSS, it
makes intuitive sense that the Petrosian radii would help given
the angular-diameter–distance relation, but that does not appear
to be the case here unlike that of other studies (e.g., Wadadekar
2005).

The papers associated with this project and the code used
to generate the results from this paper are available on the
NASA Ames Dashlink Web site https://dashlink.arc.nasa.gov/
algorithm/stablegp. M.J.W thanks Jim Gray, Ani Thakar, Maria
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the University of Washington. This publication makes use of
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